Given an expression:
![(-81)^{(1)/(4)}](https://img.qammunity.org/2023/formulas/mathematics/college/b4tc92lm39pweixg7xxf6bsb4ne9sxznjd.png)
We have to simplify the expression, if it does not result in a real number then the answer is NONE.
Let:
![x=(-81)^{(1)/(4)}](https://img.qammunity.org/2023/formulas/mathematics/college/wj6q3x3e6mylscrg9ma58br6xbxrgz0o0j.png)
Then,
![\begin{gathered} x=(-81)^{(1)/(4)} \\ \Rightarrow x^4=((-81)^{(1)/(4)})^4 \\ \Rightarrow x^4=-81 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2lw72uwko8xhjit8d3a4p9vr1y4bz0ktg1.png)
There is no real number whose power 4 is a negative number.
Thus, the answer is not a real number. The answer is NONE.