Given:
The ratio of the diagonals of the squares ABCD and DEFG is:
![AC:FD=7:5](https://img.qammunity.org/2023/formulas/mathematics/college/ps5ity3t6y7buya8r3odrcrndnv7tztbgn.png)
Required-the value of CE.
Step-by-step explanation:
Given that the ratio of the diagonals of the squares ABCD and DEFG is:
![AC:FD=7:5](https://img.qammunity.org/2023/formulas/mathematics/college/ps5ity3t6y7buya8r3odrcrndnv7tztbgn.png)
So, the sides will be in the same ratio.
![AD:GD=7:5](https://img.qammunity.org/2023/formulas/mathematics/college/bevu7im0ftv04zq7weigrowq818lzkwd4o.png)
Let the sides of the two triangles ABCD and DEFG be 7x and 5x.
Given that
![AG=3cm](https://img.qammunity.org/2023/formulas/mathematics/college/zmopyxv4rl01s3fpb1ez7y74a83qm1karu.png)
So, we can write AG as:
![\begin{gathered} AG=AD-GD \\ 3=7x-5x \\ \\ 2x=3....(1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/smnitfvcclzjvx3npvgsyg9qcexh48neqn.png)
Now, we have to find CE, so we can write CE as:
![\begin{gathered} CE=CD+DE \\ \\ CE=7x+5x \\ \\ CE=12x \\ \\ CE=6(2x) \\ \\ CE=6*3 \\ \\ CE=18cm \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pf6wsze0627bt0wxshwa1dm4busgwob5kc.png)
Final answer: The value of CE is 18 cm.