Given the expression:
![(x+3)-\lbrack(x+2)(x^3-1)\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/hehjpxagz82612ov7hngxw1226zpg9cgo8.png)
You can simplify it as follows:
1. Apply the FOIL Method to multiply the binomials inside the square brackets. This method states that:
![(a+b)(c+d)=ac+ad+bc+bd](https://img.qammunity.org/2023/formulas/mathematics/high-school/kuxpyq84a5afz3rajtbhk4ynou3aar7oyu.png)
You need to remember the Sign Rules for Multiplication:
![\begin{gathered} +\cdot+=+ \\ -\cdot-=+ \\ +\cdot-=- \\ -\cdot+=- \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m2raep1pgz21yhja2kt5q3f69n9yde2j7r.png)
It is important to remember that, according to the Product of Powers Property, you need to add the exponents when you multiply powers with the same base.
Then, you get:
![=(x+3)-\lbrack(x)(x^3)-(x)(1)+(2)(x^3)-(2)(1)\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/gnq77tghnre10otqefnsiwknoh3ed7drga.png)
![=(x+3)-\lbrack x^4-x+2x^3-2\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/qooopcvguw00u5wd7acrigkinz3zrlwh2f.png)
2. Distribute the negative sign:
![=(x+3)-x^4+x-2x^3+2](https://img.qammunity.org/2023/formulas/mathematics/college/4b3d65othk49y483y5xjnmgz0f65fpbtku.png)
3. Add the like terms:
![=x+3-x^4+x-2x^3+2](https://img.qammunity.org/2023/formulas/mathematics/college/z92er4pkovvvqrv9j8s4fnzhlihlc8g8xd.png)
![=-x^4-2x^3+2x+5](https://img.qammunity.org/2023/formulas/mathematics/college/8rhknn44k0o4x0sj2zxy4ifbz2s3jdu4l0.png)
Hence, the answer is: Option A.