194k views
1 vote
Select the correct answer. What is the value of y in this linear system? 41 - 2y + 3z = 1 80 - 3y + 5z = 4 71 - 2y + 4z = 5 O A. 3 OB. 0 O C. 1 o D. -1 Reset Next Al rights reserved.

Select the correct answer. What is the value of y in this linear system? 41 - 2y + 3z-example-1
User Pablo Yabo
by
8.0k points

1 Answer

3 votes

Solve the given simultaneous equation to find the value of y:


\begin{gathered} \begin{cases}4x-2y+3z=1 \\ 8x-3y+5z=4 \\ 7x-2y+4z=5\end{cases} \\ \text{Multiply the first equation by 2 to get: } \\ 8x-4y+6z=2 \end{gathered}

Subtract the new equation from the second equation:


\begin{gathered} \begin{cases}8x-3y+5z=4 \\ 8x-4y+6z=2\end{cases} \\ \text{Subtract to get:} \\ -3y-(-4y)+5z-6z=4-2_{} \\ \Rightarrow-3y+4y-z=2 \\ \Rightarrow y-z=2 \end{gathered}

Multiply the first equation by 7 and the last equation by 4, then subtract:


\begin{gathered} \begin{cases}28x-14y+21z=7 \\ 28x-8y+16z=20\end{cases} \\ \text{Subtract the second equation from the first:} \\ \Rightarrow-14y-(-8y)+21z-16z=7-20 \\ \Rightarrow-6y+5z=-13 \end{gathered}

Combine this equation with the first one derived, y-z=2.


\begin{gathered} \begin{cases}-6y+5z=-13 \\ y-z=2\end{cases} \\ \text{Multiply the second equation by 5:} \\ \begin{cases}-6y+5z=-13 \\ 5y-5z=10\end{cases} \\ Add\text{ the equations:} \\ \Rightarrow-6y+5y+5z-5z=-13+10 \\ \Rightarrow-y=-3 \\ \text{Divide both sides by -1:} \\ \Rightarrow y=3 \end{gathered}

Hence, the value of y is 3.

The correct option is A.

User Greg Jennings
by
8.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories