SOLUTION:
Case: Circle equations
Method:
The endpoints of the diameter are P(-2, -1) and Q(-6, -3)
The diameter therefore:
![\begin{gathered} d^2=(-6--2)^2+(-3--1)^2 \\ d^2=(-6+2)^2+(-3+1)^2 \\ d^2=(-4)^2+(-2)^2 \\ d^2=16+4 \\ d^2=20 \\ d=√(20) \\ d=√(4*5) \\ d=2√(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v7mfx90mvw0qrzb5u42wykqvs8x6einigz.png)
The radius therefore is:
![\begin{gathered} diameter=2√(5) \\ radius \\ r=(2√(5))/(2) \\ r=√(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hixayq3t5gdaotclw0ed0zgonarevd8f9u.png)
The equation of a circle is given as:
![\begin{gathered} (x-a)^2+(y-b)^2=r^2 \\ (x-a)^2+(y-b)^2=(√(5))^2 \\ (x-a)^2+(y-b)^2=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4jv52pr0i0cze3o9dfk1swbmxutpa00ehv.png)
The center (a, b) is the midpoint between P and Q
![\begin{gathered} x_m=(x_1+x_2)/(2) \\ x_m=(-2-6)/(2) \\ x_m=(-8)/(2) \\ x_m=-4 \\ AND \\ y_m=(y_1+y_2)/(2) \\ y_m=(-1-3)/(2) \\ y_m=(-4)/(2) \\ y_m=-2 \\ The\text{ }center \\ (-4,-2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tiulo1zrohr821awkc6kk3wmquljy6g5bi.png)
The center (a,b) is (-4, -2)
Final answer:
![(x-[-4])^2+(y-[-2])^2=5](https://img.qammunity.org/2023/formulas/mathematics/college/n037h1cjvuqw1sx811j5kx8ciht7s3nft6.png)