Given:
The length of the rectangle is,
![2x^3-5x^2+8](https://img.qammunity.org/2023/formulas/mathematics/college/budq82njo76ud49s532s9sfq2pga2hftc3.png)
The width of the rectangle is,
![x+3](https://img.qammunity.org/2023/formulas/mathematics/high-school/8qhja03oysgzd16fx7m4wbwfiri3d6nie2.png)
To find:
The number of terms in the area of the rectangle.
Step-by-step explanation:
The area of the rectangle is
![A=l* w](https://img.qammunity.org/2023/formulas/mathematics/college/lmmzpu3pbc5f31ild3jzkycy7t9l4cj8y8.png)
Substituting the given values we get,
![\begin{gathered} A=(2x^3-5x^2+8)(x+3) \\ =2x^4+6x^3-5x^3-15x^2+8x+24 \\ =2x^4+x^3-15x^2+8x+24 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s5eprc4cuwpu9geopmenandp2q9wihf57s.png)
Therefore, the polynomial has 5 terms.
Final answer:
The polynomial has 5 terms.