The given function is
![f(x)=2x^2+16x+30](https://img.qammunity.org/2023/formulas/mathematics/high-school/kyxldm3zt2s8ewoui0wfsimled82inzjzt.png)
To find the minimum of this function, we have to find the vertex of the parabola V(h,k). Where
![h=-(b)/(2a),k=f(h)](https://img.qammunity.org/2023/formulas/mathematics/high-school/s2s8is33qvlg0hvtb4pal9g6bbej733a1d.png)
Where a = 2, and b = 16. Replacing these values, we have
![h=(-16)/(2(2))=-(16)/(4)=-4](https://img.qammunity.org/2023/formulas/mathematics/high-school/kvwhtapymr3yyh4gnxkqnvh5dyxun2kipf.png)
Then, we find k
![k=f(-4)=2(-4)^2+16(-4)+30=2(16)-64+30=-2](https://img.qammunity.org/2023/formulas/mathematics/high-school/rjz9sfk361p12vnksewteldcp5carqsxpj.png)
So, the vertex is at (-4, -2).
Therefore, the minimum of this function is at -2. Since the vertex is the lowest point of this parabola.