Since the function of the difference between the length of spring and non-compressed length is
![f(\theta)=2cos\theta+√(3)](https://img.qammunity.org/2023/formulas/mathematics/college/1u2ix0tv6etnx90vx24uohqyd4ksdj9xf3.png)
Part A:
If the two lengths are equal then the difference will be 0, then equate f(theta) by 0
![\theta\rightarrow theta](https://img.qammunity.org/2023/formulas/mathematics/college/17a5awmmmm5qyh165lwulyc6xc9mprovu9.png)
![\begin{gathered} f(\theta)=0 \\ 2cos\theta+√(3)=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h0an0msnxr50lr5egexm51zv0p8ntmefd1.png)
Subtract root 3 from both sides
![\begin{gathered} 2cos\theta+√(3)-√(3)=0-√(3) \\ 2cos\theta=-√(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2sfu2srjmpw31km5h22mbp5ds8nv939hcb.png)
Divide both sides by 2
![\begin{gathered} (2cos\theta)/(2)=-(√(3))/(2) \\ cos\theta=-(√(3))/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v0b71n81vhixbwfjpjr8kogsvbnz1sahoj.png)
Since the values of cos are negative in the 2nd and 3rd quadrant, then we will find the value of theta on them
![\begin{gathered} \theta=\pi-cos^(-1)((√(3))/(2)) \\ \theta=\pi-(\pi)/(6)+2\pi n \\ \theta=(5\pi)/(6)+2\pi n \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sy92k7cg1r1hfr52ase15jxsog0tjq8zu9.png)
![\begin{gathered} \theta=\pi+(\pi)/(6)+2\pi n \\ \theta=(7\pi)/(6)+2\pi n \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/13fyznlwqhlkkx5uh8qa78ye2g7w6iy83i.png)
n is any integers
Part B:
We will replace theta with 2 theta
![\begin{gathered} 2\theta=\pi-(cos^(-1)(√(3))/(2)) \\ 2\theta=\pi-(\pi)/(6) \\ 2\theta=(5)/(6)\pi \\ (2\theta)/(2)=((5\pi)/(6))/(2) \\ \theta=(5\pi)/(12) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ewau3q6gh5prnssg5qrpw53fpzkpy13h39.png)
![\begin{gathered} 2\theta=\pi+cos^(-1)((√(3))/(2)) \\ 2\theta=\pi+(\pi)/(6) \\ 2\theta=(7\pi)/(6) \\ (2\theta)/(2)=((7\pi)/(6))/(2) \\ \theta=(7\pi)/(12) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jzx4gu4ufoh3db4aniliic6bussvwiy3w4.png)
n = 1 because the interval from [0, 2pi]
Then the value of theta in part 2 is half the value of theta in part 1
The function with 2theta is
![f(2\theta)=2cos2\theta+√(3)](https://img.qammunity.org/2023/formulas/mathematics/college/cegyve3gh4btf5m2vyapwenmlzgkk8afai.png)
Part C:
The other given equation is
![g(x)=1-sin^2\theta+√(3)](https://img.qammunity.org/2023/formulas/mathematics/college/hzqr8imdv0t8bs0dqyw41prkqwb8kbaui2.png)
We will equate the two functions to find the time
![\begin{gathered} f(\theta)=g(\theta) \\ 2cos\theta+√(3)=1-sin^2\theta+√(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/35sx5dbgy08gw7vcgja7vvs0nfb9pd34pz.png)
Subtract root 3 from both sides
![\begin{gathered} 2cos\theta+√(3)-√(3)=1-sin^2\theta+√(3)-√(3) \\ 2cos\theta=1-sin^2\theta \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3efkyjgqktqa94d17to6squ1ztjh83w2pb.png)
Since
![1-sin^2\theta=cos^2\theta](https://img.qammunity.org/2023/formulas/mathematics/college/5h92vwite719x8o27nws0tutj7npddkn5o.png)
Then
![2cos\theta=cos^2\theta](https://img.qammunity.org/2023/formulas/mathematics/college/owrs1l8tvsrz5wjnhb6h273xonb7w1enwf.png)
Subtract 2cos theta from both sides
![\begin{gathered} 2cos\theta-2cos\theta=cos^2\theta-2cos\theta \\ 0=cos^2\theta-2cos\theta \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k6sb7p5k4j657iwkoghw0p3hc3bo7yjdsj.png)
Take cos theta as a common factor
![\begin{gathered} cos\theta((cos^2\theta)/(cos\theta)-(2cos\theta)/(cos\theta))=0 \\ cos\theta(cos\theta-2)=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/he1snci9s1nhl92vx9z29mktolx8csq0ib.png)
Equate each factor by 0 to find the value of theta
![\begin{gathered} cos\theta=0 \\ \theta=0,\theta=\pi \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5nwq4tdlrx5bcpzgrx9fih0aaz57se4rq0.png)
![\begin{gathered} cos\theta-2=0 \\ cos\theta-2+2=0+2 \\ cos\theta=2\rightarrow neglect\text{ it because 0}\leq cos\theta\leq1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wab8ihh83ann34syk57fmy5vsg0sdhl8ae.png)
Then they have the same length at the time
![\theta=0,\theta=\pi](https://img.qammunity.org/2023/formulas/mathematics/college/6m8x2n5yz7fp15fs19nfficvc39g0j8e4k.png)