Answer:
557 feet
Step-by-step explanation:
The straight lines drawn around the area form a right-triangle.
In the right-triangle, the distance from Pier 1 to Pier 2 is the Hypotenuse of the right-triangle.
Using Pythagoras Theorem
• Hypotenuse²=Opposite²+Adjacent²
Let the distance from pier 1 to pier 2=x
![\begin{gathered} \text{Hypotenuse}^2=425^2+360^2 \\ \text{Hypotenuse}^2=180625^{}+129600 \\ \text{Hypotenuse}^2=310225 \\ \text{Hypotenuse=}\sqrt[]{310225} \\ \text{Hypotenuse=556.98 fe}et \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g5n5l1qyjs79xoow9pepd4p49gywd61gon.png)
The approximate distance from pier 1 to pier 2 is 557 feet (correct to the nearest feet).