76.4k views
0 votes
consider this absolute value function.f(x) = |x-5|how can the function f be written as a piecewise function

consider this absolute value function.f(x) = |x-5|how can the function f be written-example-1

1 Answer

5 votes

Solution

By definition


|y|=\begin{cases}y,\text{ }y\ge0 \\ {} \\ {-y,\text{ }y<0}\end{cases}

Graphically, what |y| represents is

If y = x -5


\begin{gathered} \Rightarrow f(x)=|x-5|=\begin{cases}{x-5\text{ if }x-5\ge0} \\ {} \\ {-(x-5)\text{ if }x-5<0}\end{cases} \\ \\ \\ \operatorname{\Rightarrow}f(x)=\lvert x-5\rvert=\begin{cases}{x-5\text{ if }x\ge5} \\ {} \\ {-x+5\text{ if }x<5}\end{cases} \end{gathered}

The correct option is D.

To have a better understanding of it lets graw its graph

consider this absolute value function.f(x) = |x-5|how can the function f be written-example-1
User Chester Husk
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories