Given the Quadratic Function:
![h(t)=-4.9t^2+70](https://img.qammunity.org/2023/formulas/mathematics/college/d06sr3628fsm4pqlepzobhzdzzh1pzsu3k.png)
(a) You need to substitute this value of "t" into the function and evaluate:
![t=1](https://img.qammunity.org/2023/formulas/mathematics/college/9voj9wprqnm0c4fyh1yxxf81ue3dyqtyij.png)
In order to find:
![h(1)](https://img.qammunity.org/2023/formulas/mathematics/college/l2mf2l2ewn1zmqg0oez0su56hfuefpz4ht.png)
Then, you get:
![h(1)=-4.9(1)^2+70](https://img.qammunity.org/2023/formulas/mathematics/college/gisbvf7923pvpc1yg2zw32slrhcha8s8yq.png)
![h(1)=65.1](https://img.qammunity.org/2023/formulas/mathematics/college/bdjgt071vhhv2o9vv62gl36zhmmwyyim5i.png)
You need to substitute this value of "t" into the function and evaluate:
![t=1.5](https://img.qammunity.org/2023/formulas/mathematics/college/p0ezqheciou0rfy939tv4ivlvu808k4re7.png)
In order to find:
![h(1.5)](https://img.qammunity.org/2023/formulas/mathematics/college/po2kjyaq6z5d42mtm4r3ghoteukvmfw9ro.png)
Then, you get:
![h(1.5)=-4.9(1.5)^2+70](https://img.qammunity.org/2023/formulas/mathematics/college/hqfn76hjy7nqebbra360lr3zsrl3w5obmt.png)
![h(1.5)=58.975](https://img.qammunity.org/2023/formulas/mathematics/college/9hc810e8hsifhy1bsmxskhlb9he5xwy359.png)
(b) You know that "h" represents the height of the ball after it is dropped (in meters) and "t" represents the time (in seconds) after it is dropped. Therefore:
1. Having this function value:
![h(1)=65.1](https://img.qammunity.org/2023/formulas/mathematics/college/bdjgt071vhhv2o9vv62gl36zhmmwyyim5i.png)
You can conclude that, after 1 second, the height of the ball is:
![65.1\text{ }meters](https://img.qammunity.org/2023/formulas/mathematics/college/toz1czmrcfjp9mf2i4u42acwufzzysrt1i.png)
2. Having this function value:
![h(1.5)=58.975](https://img.qammunity.org/2023/formulas/mathematics/college/9hc810e8hsifhy1bsmxskhlb9he5xwy359.png)
You can conclude that, after 1.5 seconds, the height of the ball is:
![58.975\text{ }meters](https://img.qammunity.org/2023/formulas/mathematics/college/ag3fke5ereg2j8sqfq0ur0q9r8mtu4zyd4.png)
Hence, the answers are:
(a)
![h(1)=65.1](https://img.qammunity.org/2023/formulas/mathematics/college/bdjgt071vhhv2o9vv62gl36zhmmwyyim5i.png)
![h(1.5)=58.975](https://img.qammunity.org/2023/formulas/mathematics/college/9hc810e8hsifhy1bsmxskhlb9he5xwy359.png)
(b) - Interpretation for this function value:
![h(1)=65.1](https://img.qammunity.org/2023/formulas/mathematics/college/bdjgt071vhhv2o9vv62gl36zhmmwyyim5i.png)
After 1 second, the height of the ball is:
![65.1\text{ }meters](https://img.qammunity.org/2023/formulas/mathematics/college/toz1czmrcfjp9mf2i4u42acwufzzysrt1i.png)
- Interpretation for this function value:
![h(1.5)=58.975](https://img.qammunity.org/2023/formulas/mathematics/college/9hc810e8hsifhy1bsmxskhlb9he5xwy359.png)
After 1.5 seconds, the height of the ball is:
![58.975\text{ }meters](https://img.qammunity.org/2023/formulas/mathematics/college/ag3fke5ereg2j8sqfq0ur0q9r8mtu4zyd4.png)