Answer:
![9.543B](https://img.qammunity.org/2023/formulas/mathematics/college/rmv27sx9xns206ihvvu9rq674knlodxrdp.png)
Step-by-step explanation: We have to find the world population in the year 2046, the formula for the population is as follows:
![\begin{gathered} P(t)=\frac{11.8}{1+0.94e^{^((-0.030t))}}\Rightarrow(1) \\ 20\leq t\leq60 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w50xzse2su10emjl9rgbyobt24vbqgq016.png)
The year 2046 translates to:
![t=2046-2000=46](https://img.qammunity.org/2023/formulas/mathematics/college/mw6r0uatgjiuvkdllpntn532lgwvei152r.png)
Therefore the population would be:
![\begin{gathered} \Rightarrow P(46)=(11.8)/(1+0.94e^((-0.030*46))^)\operatorname{\Rightarrow}(1) \\ \Rightarrow P(t)=(11.8)/(1+0.94e^(-1.38))=(11.8)/(1+(0.94)/(e^((1.38)))) \\ \Rightarrow P(46)=9.543 \end{gathered}]()
Therefore the population in 2046 would be as follows:
![9.543B](https://img.qammunity.org/2023/formulas/mathematics/college/rmv27sx9xns206ihvvu9rq674knlodxrdp.png)