1) the equation is:
![2y+x=4](https://img.qammunity.org/2023/formulas/mathematics/high-school/9mkdtao2ovl45jkhtv888px90u2vlvqyk1.png)
So we can rewrite the equation as a slope intercept so:
![\begin{gathered} 2y=-x+4 \\ y=-(1)/(2)x+2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1ityv63l8u4b4lzw601s3gyhi4uf2rw0y1.png)
So the slope is -1/2
2) the equation is:
![3x-2y=5](https://img.qammunity.org/2023/formulas/mathematics/college/wh5gr0iyr1f5k29ipp9g5x6ymsisg9glr6.png)
Now we evaluete the coordinates to see which one is not on the line so for (1,-1)
![\begin{gathered} 3(1)-2(-1)=5 \\ 3+2=5 \\ 5=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/kkqi7wuzk1f2x2bwgazzy8qewgol5bs01a.png)
So is on the line
for (-1,-4)
![\begin{gathered} 3(-1)-2(-4)=5 \\ -3+8=5 \\ 5=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yzpugynkqyf36dpr7xyuyf6imqf3ipqh6r.png)
So it is on the line
for (3,2)
![\begin{gathered} 3(3)-2(2)=5 \\ 9-4=5 \\ 5=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/kkuett1wvmuznassc5q8tshua4846jdnpx.png)
So it is on the line
Finally for (1,2)
![\begin{gathered} 3(1)-2(2)=5 \\ 3-4=5 \\ -1\\e5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ewswn8p9u8qiwaf2w4hadvaqegat6rcjt2.png)
So (1,2) is not on the line
3) if the slope is -2 and goes to the point (3,-1) we can use the equation of a line to find the intercept so:
![\begin{gathered} y=-2x+b \\ -1=-2(3)+b \\ -1=-6+b \\ -1+6=b \\ 5=b \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/f0zx6j94zy1cw7egqiejugdapkid2lwgnt.png)
So the intercept is 5 so the equation is:
![y=-2x+5](https://img.qammunity.org/2023/formulas/mathematics/high-school/mu4o6jzbtomonljpd3dhkx7olgciqacik9.png)