189k views
2 votes
Determine if f, g, and h are true or false. If false, correct the statement with an explanation

Determine if f, g, and h are true or false. If false, correct the statement with an-example-1
User HDCerberus
by
7.8k points

1 Answer

4 votes

We need to determine if the statements are true or false.

In order to do so, we need to pay attention to the following notations:


\begin{gathered} (\sin x)^(-1)=(1)/(\sin x) \\ \\ \sin^(-1)x=\text{ inverse function of }\sin x \end{gathered}

The same notations apply to cosine and tangent functions.

The inverse f⁻¹(x) is the function such that:


(f^(-1)\circ f)(x)=f^(-1)(f(x))=x

Thus, we have:


\cos^(-1)(\cos((15\pi)/(6)))=(15\pi)/(6)

Therefore, statement g. is true.

In order to show that statements f. and h. are false, let's see what happens for x = 1/2:


\begin{gathered} (\sin^(-1)((1)/(2)))/(\cos^(-1)((1)/(2)))=((\pi)/(6))/((\pi)/(3))=(3)/(6)=0.5\text{ \lparen no units\rparen} \\ \\ \tan^(-1)((1)/(2))\cong0.46\text{ \lparen rad\rparen} \\ \\ \Rightarrow(\sin^(-1)((1)/(2)))/(\cos^(-1)((1)/(2)))\\e\tan^(-1)((1)/(2)) \end{gathered}
\begin{gathered} \sin^(-1)((1)/(2))=(\pi)/(6)\cong0.52 \\ \\ (1)/(\sin((1)/(2)))\cong2.09 \\ \\ \Rightarrow\sin^(-1)((1)/(2))\\e(1)/(\sin((1)/(2))) \end{gathered}

Answer:

f. False

g. True

h. False

Notice that we can correct the statements f. and h. by using the correct notation:


\begin{gathered} \text{ f. }((\sin x)^(-1))/((\cos x)^(-1))=(\tan x)^(-1) \\ \\ \text{ h. }(\sin x)^(-1)=(1)/(\sin x) \end{gathered}

User Tog
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories