Given the polynomial:
![y=a^2+16a+64](https://img.qammunity.org/2023/formulas/mathematics/college/9d2ld4taln6czwxtcd073grmezdikwl0iu.png)
The x-intercepts are the points in which the polynomial crosses the x-axis. That is, are the points (x, 0).
To find these points, use the quadratic formula according to the steps below.
Step 01: Substitute the values in the quadratic formula.
For a equation y = ax² + bx + c, the x-intercepts are:
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/rxvf73usjbbwyik14knxdemoz21vfz2ufc.png)
In this question,
a = 1
b = 16
c = 64
Substituting the values:
![\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ x=\frac{-16\pm\sqrt[]{16^2-4\cdot1\cdot64}}{2\cdot1} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nmiwkl1f1ciyldw5knabqfwmdfit9277hp.png)
Step 02: Solve the equation above.
Begin by solving the square and the multiplications:
![x=\frac{-16\pm\sqrt[]{256^{}-256}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/vs9qcvw5nyt85pgwuceihryrwzyoi16m30.png)
Now, subtract the values inside the root.
![x=\frac{-16\pm\sqrt[]{0}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/dkms299a1zjewac2z9pcpsc6zy0bfvrrp6.png)
Solve the root:
![x=(-16\pm0)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/n5hpuzkkvf4t70joy6wvwiwgewjil84ww2.png)
And find the values of x:
![\begin{gathered} x_1=(-16-0)/(2)=-(16)/(2)=-8 \\ x_2=(-16+0)/(2)=-(16)/(2)=-8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/anjzoowmt5nec507vf3ayh20863xplguib.png)
Answer: The x-intercepts are: (-8, 0), (-8, 0).