Given:
KM=12 cm.
KO=1+KL
![KL=(1)/(3)LM](https://img.qammunity.org/2023/formulas/mathematics/college/n524c8839u76zm2vqv4jhzhkrfx3kir7gg.png)
Since KM=12 cm, we can write
![\begin{gathered} KM=KL+LM \\ KM=(1)/(3)LM+LM \\ 12\text{ =}(4)/(3)LM \\ LM=(12*3)/(4) \\ LM=9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dq8jfz1hx1bdmscfmtpsx7nzf9zoob0465.png)
Therefore, KL can be calculated as,
![\begin{gathered} KL=(1)/(3)LM \\ =(1)/(3)*9 \\ =3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jy3t8xynp1i8c5dap7tgy6v21rs1yb6ai9.png)
Now, KO can be calculated as,
![\begin{gathered} KO=1+KL \\ =1+3 \\ =4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dwttqbstjgm9bvjaj5cbpj29spyy3lkiar.png)
Now, using geometric property,
![KM* KL=KN* KO](https://img.qammunity.org/2023/formulas/mathematics/college/ps491yrjlpe1ip41lyql4fjh7ijxe7e4zo.png)
Putting the values in the above equation, KN can be calculated as,
![\begin{gathered} 12*3=KN*4 \\ KN=(12*3)/(4) \\ KN=9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ckmdb681fj0948do662f172z2m22wvja5g.png)
Now, ON can be calculated as,
![\begin{gathered} ON=KN-KO \\ =9-4 \\ =5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lujov82qm4uzi4k2i8daizyeo6n7glhyp1.png)
Since LM=9 is a chord longer than MN in the given circle, the length of MN is less than 9.
Therefore, the segments with length 9 are LM and KN.