Given data:
The diagonals of rhombus d1 = 15 in and d2 = 20 in
The area of the rhombus,
![\begin{gathered} A=(1)/(2)* d1* d2 \\ A=(1)/(2)*15*20 \\ A=150\text{ inches sq.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zqy0zvaksypc0hycdyv1yco0gp4y0xmk8l.png)
Now, to find the perimeter of rhombus we first find the side of rhombus.
The diagonal of the rhombus is considered as diameter, so the radius will be
d1 = r1 = 7.5
d2 = r2 = 10
So, by using the pythagorean theorem we find the side of the rhombus
![\begin{gathered} h^2=(7.5)^2+(10)^2 \\ h^2=56.25+100 \\ h^2=156.25 \\ h=12.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hm2zrmq0273hpg457k538tee1pq9jtfq0m.png)
The perimeter of the rhombus is,
![\begin{gathered} P=4* side \\ P=4*12.5 \\ P=50\text{ inches} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xvq8de4ntij51xyvp4ac9hwccagerqwotd.png)
Thus, the area is 150 in. sq. and perimeter is 50 in.