Answer:
![\begin{gathered} x-intercept:\text{ \lparen-6,0\rparen} \\ y-intercept:\text{ \lparen0,3\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y20vsang00e8h6ndxilrwfz6dvhmcdqhgi.png)
Explanation:
A linear equation is represented by the following equation:
![\begin{gathered} y=mx+b \\ where, \\ m=\text{ slope} \\ b=\text{ y-intercept} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h3xpsczr75gghuqel93m8czcn7av2vqelk.png)
Therefore, if we re-organize the equation using the slope-intercept form, we can identify ''b'':
![y=(x)/(2)+3](https://img.qammunity.org/2023/formulas/mathematics/college/prkwaujcaymbmm2vz88u6lu5a3er7ee02l.png)
Therefore, the y-intercept of the function is (0,3).
Now, for the x-intercept, substitute y=0.
![\begin{gathered} 0=(x)/(2)+3 \\ (x)/(2)=-3 \\ x=-6 \\ \text{ Then,} \\ x-intercept=\text{ \lparen-6,0\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dsr9vkyoghaftooc0sjt7zaps1bx9omut1.png)