Given the equation of the curve:
![y^2=x^3+3x^2...(1)](https://img.qammunity.org/2023/formulas/mathematics/college/ls4g4q0aimt0nzss950xrtxv9hbkvm5p0i.png)
Using implicit differentiation:
![\begin{gathered} 2y\cdot(dy)/(dx)=3x^2+6x \\ \\ (dy)/(dx)=(3x^2+6x)/(2y) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c3rklxz68680tvwtl67fb6q6r55umzucco.png)
For the points with the slope equal to 0, we have:
![(dy)/(dx)=0](https://img.qammunity.org/2023/formulas/mathematics/college/x8r27yqfnxssgmmr5bwiotweffnpymuh3f.png)
Using the expression above:
![\begin{gathered} (3x^2+6x)/(2y)=0 \\ \\ (3x(x+2))/(2y)=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/malrr51lc5lfljkni0egbv22itwa8g5be3.png)
The apparent solutions are x = 0 and x = -2, but if x = 0, then y = 0 (using equation (1)), so we have an indetermination of 0/0. Then, the only solution is x = -2. Using this solution on (1):
![\begin{gathered} y^2=(-2)^3+3(-2)^2=-8+12=4 \\ \\ \Rightarrow y=2\text{ or }y=-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v9ombkyjqlf8yx8cezrf66baopaig7kdy5.png)
And this result is consistent with the graph.