116k views
2 votes
Evaluate using the definition of the definite integral (that means using the limit of a Riemann sum)

Evaluate using the definition of the definite integral (that means using the limit-example-1
User Tom Rogers
by
3.7k points

1 Answer

5 votes

The Riemann Sum Definite Integral Formula,


\int ^b_af(x)dx=\lim _(n\to\infty)\sum ^n_(i\mathop=1)f(x^{}_(i^(\ast)))\Delta x

Where


\begin{gathered} \Delta x=(b-a)/(n) \\ x_(i^(\ast))=a+(\Delta x)i \\ \end{gathered}

and,


\begin{gathered} \sum ^n_(i\mathop=1)k=kn \\ \sum ^n_{i\mathop{=}1}i=(n(n+1))/(2) \\ \sum ^n_{i\mathop{=}1}i^2=(n(n+1)(2n+1))/(6) \end{gathered}

The integral to evaluate is


\int ^b_ax^2dx

Lets find x_i *:


\begin{gathered} x_(i^(\ast))=a+(\Delta x)i \\ x_(i^(\ast))=a+((b-a)/(n))i \\ x_(i^(\ast))=a+((b-a)i)/(n) \\ x_(i^(\ast))=a+(bi-ai)/(n) \\ x_(i^(\ast))=(an+bi-ai)/(n) \end{gathered}

Now, let's find f(x_i*):


f(x_(i^(\ast)))=((an+bi-ai)/(n))^2=((an+bi-ai)/(n))((an+bi-ai)/(n))=\frac{a^2n^2+2\text{anbi}-2a^2ni-2\text{abi}^2+a^2i^2+b^2i^2}{n^2}

Now, putting it into the formula,


\begin{gathered} \int ^b_af(x)dx=\lim _(n\to\infty)\sum ^n_{i\mathop{=}1}f(x^{}_(i^(\ast)))\Delta x \\ \lim _(n\to\infty)\sum ^n_{i\mathop{=}1}\frac{a^2n^2+2\text{anbi}-2a^2ni-2\text{abi}^2+a^2i^2+b^2i^2}{n^2}*(b-a)/(n) \end{gathered}

Simplifying:


\begin{gathered} \lim _(n\to\infty)\sum ^n_{i\mathop{=}1}(\frac{a^2n^2+2\text{anbi}-2a^2ni-2\text{abi}^2+a^2i^2+b^2i^2}{n^2})*(b-a)/(n) \\ \lim _(n\to\infty)\sum ^n_{i\mathop{=}1}(a^2+\frac{2\text{abi}}{n}-(2a^2i)/(n)-\frac{2\text{abi}^2}{n^2}+(a^2i^2)/(n^2)+(b^2i^2)/(n^2))*(b-a)/(n) \\ \lim _(n\to\infty)((b-a)/(n))\lbrack\sum ^n_{i\mathop{=}1}a^2+\sum ^n_{i\mathop{=}1}\frac{2\text{abi}}{n}-\sum ^n_{i\mathop{=}1}(2a^2i)/(n)-\sum ^n_{i\mathop{=}1}\frac{2\text{abi}^2}{n^2}+\sum ^n_{i\mathop{=}1}(a^2i^2)/(n^2)+\sum ^n_{i\mathop{=}1}(b^2i^2)/(n^2)\rbrack \end{gathered}

Further simplifying:


undefined

User Spadar Shut
by
4.1k points