93.3k views
4 votes
Solve the following equation. X cubed minus 6X squared plus 6X equals zero

Solve the following equation. X cubed minus 6X squared plus 6X equals zero-example-1

1 Answer

1 vote

We have to solve this equation:


x^3-6x^2+6x=0

Third degree polynomials like this one are not easily solved, but this one has a root at x = 0. The let us factorize this polynomial as x times a second degree polynomial:


\begin{gathered} x^3-6x^2+6x=0 \\ x(x^2-6x+6)=0 \end{gathered}

Now we can find the roots of the quadratic polynomial as:


\begin{gathered} x=\frac{-(-6)\pm\sqrt[]{(-6)^2-4\cdot1\cdot6}}{2\cdot1} \\ x=\frac{6\pm\sqrt[]{36-24}}{2} \\ x=\frac{6\pm\sqrt[]{12}}{2} \\ x=\frac{6\pm\sqrt[]{4\cdot3}}{2} \\ x=\frac{6\pm2\sqrt[]{3}}{2} \\ x=3\pm\sqrt[]{3} \\ x_1=3-\sqrt[]{3} \\ x_2=3+\sqrt[]{3} \end{gathered}

Then, the solutions to the equation are:

x = 0

x = 3 - √3

x = 3 + √3

User Ashish Joseph
by
4.0k points