To factor a polynomial of the form:
![k^2+Bk+C](https://img.qammunity.org/2023/formulas/mathematics/college/lwqy16dx2mtd7fivshzko9ld7d8ms9jqu0.png)
we need to find two integer numbers, a and b, that fullfil the following:
![\begin{gathered} ab=C \\ a+b=B \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1wkb8lckofcn0fs4b8a7ud3qqmgr0p9j7u.png)
then we write the original polynomial as:
![k^2+ak+bk+C](https://img.qammunity.org/2023/formulas/mathematics/college/7u8o8erhsn1cyev1b2ifph9k1sy8q3vosl.png)
finally we factor by agrupation.
Let's do this with the polynomial:
![k^2+8k+15](https://img.qammunity.org/2023/formulas/mathematics/college/jk0rww9hrzw3zqqwtt4avlyaf07diotbut.png)
In this case we have that B=8 and C=15. We need two numbers which sum gives 8 and multiplication gives 15; this numbers can be a=5 and b=3, then:
![\begin{gathered} 3\cdot5=15 \\ 3+5=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iv23ijhg7xlq1oczogztwman937obo0e9l.png)
Then we write the polynomial as:
![k^2+5k+3k+15](https://img.qammunity.org/2023/formulas/mathematics/college/eegm4m2yeva07r4w6dij9udzn3x8ce2ffa.png)
and we factor by agrupation:
![\begin{gathered} k^2+8k^2+15=k^2+5k+3k+15 \\ =k(k+5)+3(k+5) \\ =(k+3)(k+5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3ye7o0tg9dv5f74ik8r6w1gnwb39wip8f4.png)
Therefore the factorization of the polynomial is:
![(k+3)(k+5)](https://img.qammunity.org/2023/formulas/mathematics/college/8j22yf3lee3ktdv5hmy8ruybwm5n3lk1cv.png)