The given system of equation is:
![\begin{gathered} -8x+6y=12\text{ Equation 1} \\ 8x+10y=20\text{ Equation 2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4wmb778pn1jv6lab0e0ss0zao8orertdv8.png)
First, add the second equation to the first one:
![\begin{gathered} -8x+6y=12 \\ +8y+10y=20 \\ ----------- \\ 0x+16y=32 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fzffjb5hk6obsuv3p9khbvr9obchr6ty1x.png)
Now, we obtain this new equation:
![16y=32](https://img.qammunity.org/2023/formulas/mathematics/college/j7xxijkee3qizv7wcolddqgfjcic3hegke.png)
Now, divide both sides by 16:
![\begin{gathered} (16y)/(16)=(32)/(16) \\ \text{Simplify} \\ y=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kd07jj3j6c0rimhnkg5wg8vqen8qmcsd0o.png)
Now, substitute the y-value into equation 1 and solve for x:
![\begin{gathered} -8x+6(2)=12 \\ -8x+12=12 \\ \text{Subtract 12 from both sides} \\ -8x+12-12=12-12 \\ -8x=0 \\ \text{Divide both sides by -8} \\ (-8x)/(-8)=(0)/(-8) \\ \text{Simplify} \\ x=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rcte9c84t7dnoonyr1iqzwydc8itpph2h6.png)
Then, the solution to the system is x=0 and y=2.