![Slope_(sideBC)=-(2)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/cj0mr8tathmzsjn1uq7vxyfucm8daiq7b6.png)
Step-by-step explanation
Step 1
if ABCD is a square then, the segment AB must be perpendicular to segment BC
it means,( if two lines are perpendicular, the product of the slopes is -1)
![\text{slope}1\cdot\text{slope}2=-1\text{ equation (1)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/wfa5cy624wlr1tixocz0y1vzejfap4gsiy.png)
Step 2
find the slope of segment AB
Let P1(2,1) P2(4,4)
![\begin{gathered} \text{slope}=(y_2-y_1)/(x_2-x_1) \\ \text{replacing} \\ \text{slope}=(4-1)/(4-2) \\ \text{slope1}=(3)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/3jqoylpzgjemgqqxjfoailmx67cl2oci5c.png)
Step 3
replace in equation (1) to find the slope of side BC
![\begin{gathered} (3)/(2)\cdot\text{slope}2=-1 \\ \text{slope}_(2=)-1\cdot(2)/(3) \\ \text{slope}2=-(2)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/psf288rnz4r5kp0f562ve29xd8b15f684d.png)
slope2= slope of side BC
I hope this helps you