29.5k views
4 votes
Solve the system of equations:x + 3y - z = -4 2x - y + 2z = 13 3x - 2y - z = -9

1 Answer

4 votes

Answer:

The solution to the system of equations is


\begin{gathered} x=(179)/(13) \\ \\ y=-(279)/(39) \\ \\ z=-(48)/(13) \end{gathered}

Step-by-step explanation:

Giving the system of equations:


\begin{gathered} x+3y-z=-4\ldots\ldots\ldots\ldots\ldots\ldots..........\ldots\ldots\ldots\ldots.\ldots\text{.}\mathrm{}(1) \\ 2x-y+2z=13\ldots\ldots...\ldots\ldots\ldots\ldots..\ldots..\ldots\ldots\ldots\ldots\ldots.(2) \\ 3x-2y-z=-9\ldots\ldots\ldots.\ldots\ldots\ldots\ldots....\ldots\ldots.\ldots\ldots\ldots\text{.}\mathrm{}(3) \end{gathered}

To solve this, we need to first of all eliminate one variable from any two of the equations.

Subtracting (2) from twice of (1), we have:


5y-4z=-21\ldots\ldots\ldots\ldots\ldots.\ldots.\ldots..\ldots..\ldots\ldots.\ldots..\ldots\text{...}\mathrm{}(4)

Subtracting (3) from 3 times (1), we have


3y-5z=-3\ldots\ldots...\ldots\ldots..\ldots\ldots\ldots\ldots\ldots.\ldots\ldots\ldots\ldots\ldots..\ldots\ldots(5)

From (4) and (5), we can solve for y and z.

Subtract 5 times (5) from 3 times (4)


\begin{gathered} 13z=-48 \\ \\ z=-(48)/(13) \end{gathered}

Using the value of z obtained in (5), we have


\begin{gathered} 3y-5(-(48)/(13))=-3 \\ \\ 3y+(240)/(13)=-3 \\ \\ 3y=-3-(240)/(13) \\ \\ 3y=-(279)/(13) \\ \\ y=-(279)/(39) \end{gathered}

Using the values obtained for y and z in (1), we have


\begin{gathered} x+3(-(279)/(39))-(-(48)/(13))=-4 \\ \\ x-(279)/(13)+(48)/(13)=-4 \\ \\ x-(231)/(13)=-4 \\ \\ x=-4+(231)/(13) \\ \\ x=(179)/(13) \end{gathered}

User Douwe Maan
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories