ANSWERS
a.
b. sin(θ) = 21/29
c. tan(θ) = 21/20
Step-by-step explanation
For any right triangle the trigonometric ratios are:
![\cos \theta=\frac{\text{adjacent}}{\text{ hypotenuse}}](https://img.qammunity.org/2023/formulas/mathematics/college/68pqwu1bfiqv65a04660yhwrhyw23pj0zb.png)
![\sin \theta=\frac{\text{opposite}}{\text{ hypotenuse}}](https://img.qammunity.org/2023/formulas/mathematics/college/p6saozcclwmtpfprcs3yj18k8jedq42okm.png)
![\tan \theta=(\sin \theta)/(\cos \theta)=\frac{\text{ opposite}}{\text{ adjacent}}](https://img.qammunity.org/2023/formulas/mathematics/college/of7b48oxipi80lhua9pa6pgmzpt5kin3lf.png)
We know the hypotenuse and the adjacent, we want to know the opposite. We can find it using the Pythagorean theorem:
![\begin{gathered} h^2=(\text{adjacent)}^2+(\text{opposite)}^2 \\ 29^2=20^2+(\text{opposite)}^2 \\ \text{opposite}=\sqrt[]{29^2-20^2} \\ \text{opposite}=\sqrt[]{441} \\ \text{opposite}=21 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k59phh5290g431y2ge5z405a4s9y59q4bu.png)
The sine of the angle is:
![\sin \theta=(21)/(29)](https://img.qammunity.org/2023/formulas/mathematics/college/6wvhc9gbengqnu9vpfrutyxm55yqeygfbd.png)
The tangent is:
![\tan \theta=(21)/(20)](https://img.qammunity.org/2023/formulas/mathematics/college/u6pzr9lloayq6oglgxpmn9m3uz30iit5u4.png)