The figure attached is composed of a cylinder and an sphere. Then:
Surface Area = Total Area of the Sphere + Side Area of the Cylinder.
Hence:
![\begin{gathered} A_(sphere)=4πr^2 \\ A_(sphere)=4*\pi*8^2 \\ A_(sphere)=804.25cm^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ljgsorp6me2p7m2hwv4niw98n2ze8wbai1.png)
Now, the side area of the cylinder:
![\begin{gathered} SA_(cylinder)=2*π* r* h \\ SA_(cylinder)=2*π*8*12.5 \\ SA_(cylinder)=628.32cm^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wv4xv7g90mb31q0bngmj417c20vnfcszan.png)
Finally:
![SA=804.25+628.32=1432.57cm^2](https://img.qammunity.org/2023/formulas/mathematics/college/y9kgktwy3pmg7k0y6ra7omy2sdm0lan49o.png)
ANSWER
The surface area is 1432.6 cm²
Now, to find the volume:
Total Volume = Volume of the Sphere + Volume of the Cylinder
Volume of the Sphere:
![\begin{gathered} V_(sphere)=(4)/(3)πr³ \\ V_(sphere)=(4)/(3)\pi*8^3=2144.66cm^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tnkm2m46mr5kdwukk3x4y94d6kbfd9xppb.png)
Volume of the Cylinder:
![\begin{gathered} V_(cylinder)=πr²h \\ V_(cylinder)=π*8^2*12.5=2513.27cm^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v7k4ks92xwq2gbpuk91sltn2ojy5558qu0.png)
Finally:
![V=2144.66+2513.27=4657.93cm^3](https://img.qammunity.org/2023/formulas/mathematics/college/xdb33ysr68wref2io9lqaotd7ty78xiqfz.png)
ANSWER
The volume is 4657.9cm³