As given by the question
There are given that the system of the equation:
![\begin{gathered} 7x+y=7\ldots(1) \\ y=x+2\ldots(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x7t07c96wj1l22pwjqe44rz8fa1zuhff8t.png)
Now,
Put the value of y from equation (2), into equation (1):
So,
![\begin{gathered} 7x+y=7 \\ 7x+x+2=7 \\ 8x+2=7 \\ 8x=7-2 \\ 8x=5 \\ x=(5)/(8) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/crjpeo5c7bo00v4y8fkh3lby5k8jmtq191.png)
Now,
Put the value of x into the equation (2):
![\begin{gathered} y=x+2 \\ y=(5)/(8)+2 \\ y=(5+16)/(8) \\ y=(21)/(8) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r06cc2u5n7n05wwb9umxcxctrilyl080i9.png)
So, the value of x and y is shown below:
![\begin{gathered} x=(5)/(8),\text{ }y=(21)/(8) \\ ((5)/(8),\text{ }\frac{\text{21}}{8}) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w2byv5nzcfr4azkg6dyaihutpahjs8p5qr.png)
Hence, the correct option is A.