graphing
to find the perimeter we need the measure of each side
we can use the formula to find the distance
![d=\sqrt[]{(x2-x1)^2+(y2-y1)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/1h551ypq5weta3sw0dynfch7nxiwrgmnba.png)
where (x1,y1) and (x2,y2) are the coordinates of each point
Side AB
![\begin{gathered} \sqrt[]{(1-4)^2+((-2)-(-3))^2} \\ \\ \sqrt[]{-3^2+1^2} \\ \\ AB=\sqrt[]{10} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e8jyp5ot2re8f84setxqeiqvzr7cn3htqo.png)
Side BC
![\begin{gathered} \sqrt[]{(4-3)^2+((-3)-(-4))^2} \\ \\ \sqrt[]{1^2+1^2} \\ \\ BC=\sqrt[]{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yvz0aqcgz39jxepokskocjvtb4bl3e77kh.png)
Side CD
![\begin{gathered} \sqrt[]{(3-1)^2+((-4)-(-4))^2} \\ \\ \sqrt[]{2^2+0^2} \\ \\ CD=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5v94tcn8aoiai9xigcutplo7ldz919vwi0.png)
Side DA
![\begin{gathered} \sqrt[]{(1-1)^2+((-4)-(-2))^2} \\ \\ \sqrt[]{0^2+(-2)^2} \\ \\ DA=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/srvnirclhwqa62hzkgaftkzakf9k5p4krx.png)
now, sum the sides
![\begin{gathered} P=AB+BC+CD+DA \\ P=\sqrt[]{10}+\sqrt[]{2}+2+2 \\ P=8.576 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/70zy5mfd4u3xn19jrad63l5prxa2fvb1tr.png)
rounding the perimeter is 8.6 units