172k views
2 votes
Solve x^2 + 5x – 3 = 0 using the quadratic formula.

Solve x^2 + 5x – 3 = 0 using the quadratic formula.-example-1

1 Answer

4 votes

The quadratic formula is:


x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}

For a quadratic equation in standard form:


ax^2+bx+c=0

In this case, we have:


\begin{gathered} a=1 \\ b=5 \\ c=-3 \end{gathered}
\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ x=\frac{-5\pm\sqrt[]{(5)^2-4(1)(-3)}}{2(1)} \\ x=\frac{-5\pm\sqrt[]{25+12}}{2} \\ x=\frac{-5\pm\sqrt[]{37}}{2} \end{gathered}

The given quadratic equation has two solutions:

• First one


\begin{gathered} x_1=\frac{-5+\sqrt[]{37}}{2} \\ x_1=-(5)/(2)+\frac{\sqrt[]{37}}{2} \end{gathered}

• Second one


\begin{gathered} x_2=\frac{-5-\sqrt[]{37}}{2} \\ x_2=-(5)/(2)-\frac{\sqrt[]{37}}{2} \end{gathered}

Therefore, the solutions of the given quadratic equation are:


$$\boldsymbol{x=-(5)/(2)+\frac{\sqrt[]{37}}{2}}$$,$$\boldsymbol{x=-(5)/(2)-\frac{\sqrt[]{37}}{2}}$$

User Chris Butler
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories