We need to use the following property of radicals to solve this question:
![√(a\cdot b)=√(a)√(b)](https://img.qammunity.org/2023/formulas/mathematics/college/3cuvfahnhb3fv26cajp3csif6u2ouymth6.png)
The expression given is:
![7√(3)+10√(108)](https://img.qammunity.org/2023/formulas/mathematics/college/3ra2cj0livgrhr89avpvfv8e48uixm5hsj.png)
If we want to simplify, we need to rewrite the second term in terms of sqrt(3). We know that 108 is divisible by 3 because the sum of its digits is also divisible by 3.
Then:
![(108)/(3)=36](https://img.qammunity.org/2023/formulas/mathematics/college/7zjete039creonk79d755mizj2dlu197us.png)
We can rewrite:
![7√(3)+10√(108)=7√(3)+10√(36\cdot3)](https://img.qammunity.org/2023/formulas/mathematics/college/j1z0jl3945tw6400uxr9hh73bbmvoepdio.png)
Using the property above:
![7√(3)+10√(36)√(3)=7√(3)+10\cdot6√(3)](https://img.qammunity.org/2023/formulas/mathematics/college/4j2a3hrsvigiys0okrpgbrhfgieo5pd89g.png)
Now, we can simplify:
![7√(3)+60√(3)=67√(3)](https://img.qammunity.org/2023/formulas/mathematics/college/wapu0a6e11a9v6jnautxplgsja9xozv7ry.png)
Thus, the answer is:
![7√(3)+10√(108)=67√(3)](https://img.qammunity.org/2023/formulas/mathematics/college/socj3w6134vp09tzxy1fry801brt6qmyg1.png)