62.9k views
3 votes
Create a table of values for the function and inverse relation

Create a table of values for the function and inverse relation-example-1

1 Answer

5 votes

SOLUTION:

First, let us create a table for:


\begin{gathered} f(x)=x^2+1 \\ (-3\leq x\leq3) \end{gathered}


\begin{gathered} f(-3)=(-3)^2+1\Rightarrow9+1=10 \\ f(-2)=(-2)^2+1\operatorname{\Rightarrow}4+1=5 \\ f(-1)=(-1)^2+1\operatorname{\Rightarrow}1+1=2 \\ f(0)=(0)^2+1\operatorname{\Rightarrow}0+1=1 \\ f(1)=(1)^2+1\operatorname{\Rightarrow}1+1=2 \\ f(2)=(2)^2+1\operatorname{\Rightarrow}4+1=5 \\ f(3)=(3)^2+1\operatorname{\Rightarrow}9+1=10 \end{gathered}

The table of values:

The Inverse:


\begin{gathered} y=x^2+1 \\ x^2=y-1 \\ x=√(y-1) \\ f^(-1)(x)=√(x-1) \end{gathered}

For the values with inverses:


\begin{gathered} f^(-1)(x)=√(x-1) \\ (-3\leq x\leq3) \end{gathered}
\begin{gathered} f^(-1)(-3)=√((-3)^2-1)=√(9-1)=√(8) \\ f^(-1)(-2)=√((-2)^2-1)=√(4-1)=√(3) \\ f^(-1)(-1)=√((-1)^2-1)=√(1-1)=√(0)=0 \\ f^(-1)(0)=√((0)^2-1)=√(0-1)=√(-)1(discontinues) \\ f^(-1)(1)=√((1)^2-1)=√(1-1)=√(0)=0 \\ f^(-1)(2)=√((2)^2-1)=√(4-1)=√(3) \\ f^(-1)(3)=√((3)^2-1)=√(9-1)=√(8) \end{gathered}

The table of values for the inverse:

Create a table of values for the function and inverse relation-example-1
Create a table of values for the function and inverse relation-example-2
User Watz
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories