Step 1: Sum of angle in a triangle =180
![\begin{gathered} 33^0\text{ + 132}^0+l=180^0 \\ l=180^0-165^0 \\ l=25^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7biczx41dfj3ure9num3lg54zrq04j7egn.png)
Step 2: Find the value of m using the sine rule
Sine rule is given as
![(\sin K)/(k)=(\sin M)/(m)=(\sin L)/(l)](https://img.qammunity.org/2023/formulas/mathematics/college/lsv4dz31dq9oajxi6z3h9537lk942uydra.png)
k= 1.1 inches
K = 33°
M = 136°
L = 25°
After substitution we will have
![\begin{gathered} (\sin33)/(1.1)=(\sin136)/(m) \\ m\sin 33\text{ = 1.1sin136} \\ 0.54464m=0.76412 \\ m\text{ =1.4inches} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hy5r0hthwxm9jjtc1hcj7lqebp6u7vbbj6.png)
Step 3
Find l using sine rule
![\begin{gathered} (\sin33)/(1.1)=\frac{\sin 25\text{ }}{\text{l}} \\ l\sin 33\text{ = 1.1sin25} \\ l=0.854\text{ inches} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zb6t86ahitaxzpd31pmbaap4a1r94xprwx.png)
Step 4
Find the area of the triangle using heroin's formula stated as
![\begin{gathered} A=\sqrt[]{s(s-a)(s-b)(s-c)_{}} \\ \text{where s, the semiperimeter}=(a+b+c)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m9zm60tm8dh6zaycayfz6uzvj0grhey976.png)
Where
a= k =1.1 inches
b = m = 1.4 inches
c = l =0.854 inches
Substituting these in
Hence the area of 0.5 square inches