171k views
0 votes
WXYZ is a rectangle if M angle w x y equals 6X squared - 6 find a

WXYZ is a rectangle if M angle w x y equals 6X squared - 6 find a-example-1
User Setepenre
by
8.8k points

1 Answer

4 votes

Given the rectangle WXYZ, the angle m∠WXY=6a²-6

The given angle is a corner angle, and as you might remember all corner angles of a rectangle are right angles, so we can say that the given expression equals 90 degrees:


6a^2-6=90

From this expression you can calculate the value of a.

First step is to add 6 to both sides of the equation so that the a-related term stays alone in the left side of the equation and all costants are in the other side:


\begin{gathered} 6a^2-6+6=90+6 \\ 6a^2=96 \end{gathered}

Next divide both sides by 6:


\begin{gathered} (6a^2)/(6)=(96)/(6) \\ a^2=16 \end{gathered}

And calculate the square to both sides of the variable to reach the possible value of a:


\begin{gathered} \sqrt[]{a^2}=\sqrt[]{16} \\ a=4 \end{gathered}

Now, just because the result is positiv, that does not mean that is the only possible value for a, if you square -4 you can also get 16 as a result, so a can be negative 4 or positive 4:

a=±4

The correct option is B.

User Donm
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.