Answer:
The derivation that correctly uses the cosine sum identity to prove the cosine double angle identity is A. A 2-column table with 3 rows. Column 1 has entries 1, 2, 3. Column 2 is labeled Step with entries cosine (2 x) = cosine (x + x), = cosine (x) cosine (x) minus sine (x) sine (x), = cosine squared (x) minus sine squared (x)
Step-by-step explanation:
It should be noted that the cosine difference identity is found by simplifying the equation by first squaring both sides.
Therefore, the derivation that correctly uses the cosine sum identity to prove the cosine double angle identity is that a 2-column table with 3 rows. Column 1 has entries 1, 2, 3. Column 2 is labeled Step with entries cosine (2 x) = cosine (x + x), = cosine (x) cosine (x) minus sine (x) sine (x), = cosine squared (x) minus sine squared (x).
In conclusion, the correct option is A.