77.5k views
3 votes
Given the graph of a function f. Identify function by name. Then graph the indicated functions. State the domain and the range in set notation.A) f(x-1) -3B) -f(x)

Given the graph of a function f. Identify function by name. Then graph the indicated-example-1

1 Answer

5 votes

Answer:

For f(x);

The domain is;


D\colon x=(-\infty,\infty)

The range is;


R\colon y=\lbrack0,\infty)

Graphing those points for function A, we have;

The domain and range of the given function A is;


\begin{gathered} \text{Domain}\colon x=(-\infty,\infty) \\ \text{Range}\colon y=\lbrack-3,\infty) \end{gathered}

Graphing those points for function B, we have;

The domain and range of the given function B is;


\begin{gathered} \text{Domain}\colon x=(-\infty,\infty) \\ \text{Range}\colon y=(-\infty,0\rbrack \end{gathered}

Step-by-step explanation:

Given the function in the attached image;

The function is a square function and can be written as;


f(x)=x^2

The domain is;


D\colon x=(-\infty,\infty)

The range is;


R\colon y=\lbrack0,\infty)

A.


f(x-1)-3=(x-1)^2-3

B.


-f(x)=-x^2

Graphing the functions;

For A;


\begin{gathered} f(1-1)=(1-1)^2-3=-3 \\ (1,-3) \\ f(3-1)=(3-1)^2-3=1 \\ (3,1) \\ f(-1-1)=(-1-1)^2-3=1 \\ (-1,1) \end{gathered}

Graphing those points for function A, we have;

The domain and range of the given function A is;


\begin{gathered} \text{Domain}\colon x=(-\infty,\infty) \\ \text{Range}\colon y=\lbrack-3,\infty) \end{gathered}

For B;


\begin{gathered} -f(x)=-x^2 \\ -f(0)=-0^2 \\ (0,0) \\ -f(2)=-2^2=-4 \\ (2,-4) \\ -f(-2)=-(-2)^2=-4 \\ (-2,-4) \end{gathered}

Graphing those points for function B, we have;

The domain and range of the given function B is;


\begin{gathered} \text{Domain}\colon x=(-\infty,\infty) \\ \text{Range}\colon y=(-\infty,0\rbrack \end{gathered}
Given the graph of a function f. Identify function by name. Then graph the indicated-example-1
Given the graph of a function f. Identify function by name. Then graph the indicated-example-2
User Saad Mehmood
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories