77.5k views
3 votes
Given the graph of a function f. Identify function by name. Then graph the indicated functions. State the domain and the range in set notation.A) f(x-1) -3B) -f(x)

Given the graph of a function f. Identify function by name. Then graph the indicated-example-1

1 Answer

5 votes

Answer:

For f(x);

The domain is;


D\colon x=(-\infty,\infty)

The range is;


R\colon y=\lbrack0,\infty)

Graphing those points for function A, we have;

The domain and range of the given function A is;


\begin{gathered} \text{Domain}\colon x=(-\infty,\infty) \\ \text{Range}\colon y=\lbrack-3,\infty) \end{gathered}

Graphing those points for function B, we have;

The domain and range of the given function B is;


\begin{gathered} \text{Domain}\colon x=(-\infty,\infty) \\ \text{Range}\colon y=(-\infty,0\rbrack \end{gathered}

Step-by-step explanation:

Given the function in the attached image;

The function is a square function and can be written as;


f(x)=x^2

The domain is;


D\colon x=(-\infty,\infty)

The range is;


R\colon y=\lbrack0,\infty)

A.


f(x-1)-3=(x-1)^2-3

B.


-f(x)=-x^2

Graphing the functions;

For A;


\begin{gathered} f(1-1)=(1-1)^2-3=-3 \\ (1,-3) \\ f(3-1)=(3-1)^2-3=1 \\ (3,1) \\ f(-1-1)=(-1-1)^2-3=1 \\ (-1,1) \end{gathered}

Graphing those points for function A, we have;

The domain and range of the given function A is;


\begin{gathered} \text{Domain}\colon x=(-\infty,\infty) \\ \text{Range}\colon y=\lbrack-3,\infty) \end{gathered}

For B;


\begin{gathered} -f(x)=-x^2 \\ -f(0)=-0^2 \\ (0,0) \\ -f(2)=-2^2=-4 \\ (2,-4) \\ -f(-2)=-(-2)^2=-4 \\ (-2,-4) \end{gathered}

Graphing those points for function B, we have;

The domain and range of the given function B is;


\begin{gathered} \text{Domain}\colon x=(-\infty,\infty) \\ \text{Range}\colon y=(-\infty,0\rbrack \end{gathered}
Given the graph of a function f. Identify function by name. Then graph the indicated-example-1
Given the graph of a function f. Identify function by name. Then graph the indicated-example-2
User Saad Mehmood
by
6.7k points