166k views
4 votes
I need Help with this question... the asnwer should not be a decimal... it's about special right triangles.

I need Help with this question... the asnwer should not be a decimal... it's about-example-1
User Uthen
by
8.2k points

1 Answer

6 votes

\text{Answer: x = 13}\sqrt[]{6},\text{ y = }\frac{13\sqrt[]{6}}{2},\text{ z = 39}\sqrt[]{2}

Below is the figure of the triangle

We have three unkown variables which are x, y, and z

Firstly, let us find the unknown side z

To find z, we will be applying SOH CAH TOA

The longest side is z

The opposite sides is 39


\begin{gathered} \text{ applying SOH} \\ \text{ Sin }\theta\text{ = }\frac{opposite}{\text{hypotenus}} \\ \sin \text{ 45 = }(39)/(z) \\ \text{Introduce cross multiply} \\ z\text{ x sin 45 = 39} \\ \text{Divide both sides by sin 45} \\ \frac{z\cdot\text{ sin45}}{\sin\text{ 45}}\text{ = }\frac{39}{\sin \text{ 45}} \\ z\text{ = }\frac{39}{\sin \text{ 45}} \\ \text{ According to speciaal triangles; sin 45 = }\frac{\sqrt[]{2}}{2} \\ z\text{ = }\frac{39}{\frac{\sqrt[]{2}}{2}} \\ z\text{ = }\frac{39\text{ x 2}}{\sqrt[]{2}} \\ z\text{ = }\frac{78}{\sqrt[]{2}} \\ \text{Rationalize the expression} \\ z\text{ = }\frac{78\text{ x }\sqrt[\square]{2}}{\sqrt[]{2}\text{ x }\sqrt[]{2}} \\ z\text{ = }\frac{78\sqrt[]{2}}{2} \\ z\text{ = 39}\sqrt[]{2} \end{gathered}

Find x

X can be find by applying the SOH CAH TOA

Let z = opposite

let x = adjacent


\begin{gathered} \text{ Applying TOA} \\ \text{Tan}\theta\text{ = }\frac{opposite}{\text{adjacent}} \\ \text{opposite = z = 39}\sqrt[]{2} \\ x\text{ = adjacent} \\ \text{Tan 60 = }\frac{39\sqrt[]{2}}{x} \\ \text{Introduce cross multiply} \\ x\cdot\text{ tan 60 = 39}\sqrt[]{2} \\ \text{Divide both sides by tan 60} \\ \frac{x\cdot\text{ tan 60}}{\tan\text{ 60 }}\text{ = }\frac{39\sqrt[]{2}}{\tan\text{ 60}} \\ \text{According to special triangles}\colon\text{ Tan 60 }=\text{ }\sqrt[]{3} \\ x\text{ = }\frac{39\sqrt[]{2}}{\sqrt[]{3}} \\ \text{Rationalize the above surd} \\ x\text{ = }\frac{39\sqrt[]{2}\text{ x }\sqrt[]{3}}{\sqrt[]{3}\text{ x }\sqrt[]{3}} \\ x\text{ = }\frac{39\sqrt[]{6}}{3} \\ x\text{ = 13}\sqrt[]{6} \end{gathered}

Find y

let y = adjacent

x = Hypotenus

Applying SOH, CAH TOA


\begin{gathered} \text{ cos }\theta\text{ = }\frac{adjacent}{\text{Hypotenus}} \\ \text{Adjacent = y} \\ \text{Hypotenus = x = 13}\sqrt[]{6} \\ \text{Cos 60 = }\frac{y}{13\sqrt[]{6}} \\ \text{Cross multiply} \\ y\text{ = cos 6}0\text{ x 13}\sqrt[]{6} \\ \text{According to special angles : cos 60 = }(1)/(2) \\ y\text{= }(1)/(2)\text{ x 13}\sqrt[]{6} \\ y\text{ = }\frac{13\text{ x }\sqrt[]{6}}{2} \\ y\text{= }\frac{13\sqrt[]{6}}{2} \end{gathered}

I need Help with this question... the asnwer should not be a decimal... it's about-example-1
User Jacobytes
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories