For this problem, we are given two sides and one angle of a triangle. We need to determine the length of the side that is opposite to the known angle.
To solve this problem, we need to use the law of cosines.
![a=√(b^2+c^2-2bc\cdot\cos(m\angle A))](https://img.qammunity.org/2023/formulas/mathematics/college/whc23158kqbo5gp2mabjpmxdr0dtlbeyk3.png)
Applying the given data, we have:
![\begin{gathered} a=√(13^2+21^2-2\cdot13\cdot21\cdot\cos(105))\\ \\ a=√(169+441-546\cdot(-0.2588))\\ \\ a=√(610+141.3048)\\ \\ a=√(751.3048)=27.41 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xn17yvo82jurpqq6qpgb94ejd7vikbdo1r.png)
The correct answer is 27.4.