Given:
Total members in the committee = 19
Let's find the number of ways a president, vice president, secretary and treasurer can be chosen.
Here, we are to use permutation formula:
![^nP_r=(n!)/((n-r)!)](https://img.qammunity.org/2023/formulas/mathematics/high-school/gdpdqcyk4odbluf8cnit8vgom9giz385zb.png)
Where:
n = 19
r = 4
Thus, we have:
![\begin{gathered} ^(19)P_4=(19!)/((19-4)!) \\ \\ ^(19)P_4=(19!)/((15)!) \\ \\ =(19*18*17*16*15!)/(15!) \\ \\ =19*18*17*16 \\ \\ =93024 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mucgv38vrv7q68f10jhobrw43mlm5cizoy.png)
Solving further:
Therefore, the number of ways they can be chosen is 93024 ways.
ANSWER:
93024 ways