Hello! We can solve this exercise using the formula to calculate compound interest:
![A=P\cdot e^(rt)](https://img.qammunity.org/2023/formulas/mathematics/college/q1bg6j6dv8d1o1ne07djv6jjj1slppwjzw.png)
Let's suppose P = 100, so A must be approximate 200 (double).
t = 7 years
r = unknown rate
e = mathematical constant
![\begin{gathered} 200=100\cdot e^(7r) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pi2y4qyteff00tmr6mqs69ftf401r3ijmy.png)
Now, let's solve it:
![\begin{gathered} 100\cdot e^(7r)=200\text{ (simplify both sides by 100)} \\ e^(7r)\text{ = 2} \\ \ln (e^(7r))=\ln (2) \\ 7r=\ln (2) \\ \\ (7r)/(7)=(\ln(2))/(7) \\ \\ r=(1)/(7)\ln (2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k74s7jpnun4dz747cod99v2i0lykrxw4zt.png)
Using a calculator, we have ln(2) = 0.69314718056, so we have to divide it by 7, obtaining r = 0.099.
So, the interest rate must be equal to 0.10.