188k views
2 votes
The statement, 'A polynomial function is continuous for all real numbers" isA true for all polynomial functions.B. true for some polynomial functions.Oc.C. never true for polynomial functions.

User Joo Beck
by
4.0k points

1 Answer

3 votes

The statement is given ''A polynomial function is continuous for all real numbers" .

Consider the polynomial


f(x)=a_0+a_1x+_{}a_1x^2\ldots\ldots\ldots\ldots\ldots\ldots\ldots\text{.}\mathrm{}a_nx^n_{}

Since every polynomial function is valid for every rela number.

Prove continuity for the polynomial function at any point c.


\lim _(x\rightarrow c)f(x)=f(c)

For LHS,


\lim _(x\rightarrow c)f(x)=\lim _(x\rightarrow c)(a_0+a_1x+\ldots\ldots\ldots\ldots a_nx^n)

Susbtitute x=c.


a_0+a_1c_{}+\ldots\ldots\ldots\ldots\ldots\ldots\ldots.a_nc^n

For RHS


f(c)=a_0+a_1c+\ldots\ldots\ldots\ldots\ldots\ldots..a_nc^n

Then LHS=RHS.

The function is continuous at x=c.

Hence every polynomial function is continuous for all real numbers.

The correct option is A.

User DasBeasto
by
4.4k points