One vertex of rectangle lies on the parabola. So relation between x and y-coordinate of vertex of rectangle lying on parabola is,
![y=1-x^2](https://img.qammunity.org/2023/formulas/mathematics/college/e0t82ygzr69wvgq70i24s4f8trpdnteudz.png)
So point,
![P(x,1-x^2)](https://img.qammunity.org/2023/formulas/mathematics/college/ohkxtxgob4xs10i4orp0f6631svz4bqh5w.png)
lies on the rectangle.
The base of rectangle lies on the x-axis and parabola is symetric about y-axis. So width of reactangle is 2x and length of rectangle is,
![1-x^2](https://img.qammunity.org/2023/formulas/mathematics/college/ee4z54edn1jlvj93qfn3ux8583q4nciret.png)
The area of rectangle is,
![A=2x\cdot(1-x^2)^{}](https://img.qammunity.org/2023/formulas/mathematics/college/h4d4cgcl675ujh8hpmviyo0tbi6z7jj3qq.png)
Differentiate the area equation with respect to x.
![\begin{gathered} (dA)/(dx)=(d)/(dx)\lbrack2x(1-x^2)\rbrack \\ =(d)/(dx)\lbrack2x-2x^3\rbrack \\ =2-6x^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1p9nvmqgux0io5lnhzgg0ys219q5f9kh0r.png)
For maximum area, dA/dx = 0.
Determine the value of x for maximum area.
![\begin{gathered} 2-6x^2=0 \\ 6x^2=2 \\ x=\frac{1}{\sqrt[]{3}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v47vpfk3evdaaxaho7gvjrxd2oekpyp5xp.png)
The negative value is neglected as dimension can never less than 0.
The width of rectangle is 2x. So,
![\begin{gathered} \text{width = 2}\cdot\frac{1}{\sqrt[]{3}} \\ =\frac{2}{\sqrt[]{3}}*\frac{\sqrt[]{3}}{\sqrt[]{3}} \\ =\frac{2\sqrt[]{3}}{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fx2pm38n54ugc4ficqlah79pclywalr0vy.png)
The height of rectangle is 1 - x^2. So,
![\begin{gathered} \text{Height = 1-(}\frac{1}{\sqrt[]{3}})^2 \\ =1-(1)/(3) \\ =(2)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6ha56bgv075s6whbcv5to4ux35gyiexv4h.png)
Answer:
Width =
![\frac{2\sqrt[]{3}}{3}](https://img.qammunity.org/2023/formulas/mathematics/college/qx2lg6l0dm7km6ub7z3x4iwhwv4j6bb32m.png)
Height:
![(2)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/zeht2hdwlb899wfchg7j67j4mj43o3xc1c.png)