232k views
4 votes
Write the equation of the lowest degree polynomial with solutions x = -1, 1, 2 +- root5

1 Answer

1 vote

Given the roots of the equation to be:


x=-1,1,2\pm\sqrt[]{5}

Therefore, the factors are:


(x+1),(x-1),(x-2+\sqrt[]{5}),(x-2-\sqrt[]{5})

To get the polynomial, we will multiply the factors together:


\Rightarrow(x+1)(x-1)(x-2+\sqrt[]{5})(x-2-\sqrt[]{5})

Expanding in pairs, we can have:


\Rightarrow\lbrack(x+1)(x-1)\rbrack(x-2+\sqrt[]{5})(x-2-\sqrt[]{5})

Recall the Difference of Two Squares given to be:


a^2-b^2=(a-b)(a+b)

Hence, the first pair becomes:


(x+1)(x-1)=x^2-1^2=x^2-1

Hence, the polynomial becomes:


\Rightarrow(x^2-1)\lbrack(x-2+\sqrt[]{5})(x-2-\sqrt[]{5})\rbrack

Expanding the pair:


(x-2+\sqrt[]{5})(x-2-\sqrt[]{5})=x^2-2x-x\sqrt[]{5}-2x+4+2\sqrt[]{5}+x\sqrt[]{5}-2\sqrt[]{5}-5=x^2-4x-1

Hence, the expression becomes:


\Rightarrow(x^2-1)(x^2-4x-1)

Expanding, we get:


\Rightarrow x^4-4x^3-x^2-x^2+4x+1=x^4-4x^3-2x^2+4x+1^{}

Therefore, the polynomial is:


\Rightarrow x^4-4x^3-2x^2+4x+1

User Shorty
by
5.3k points