The momentum of first player can be given as,
![p_1=m_1v](https://img.qammunity.org/2023/formulas/physics/college/8y6cxauori3nw1vs32v7rggkgmq7065fo3.png)
The momentum of second player can be given as,
![p_2=m_2v](https://img.qammunity.org/2023/formulas/physics/college/e5sjhn7fl65a0r4h9kcovihovwwjopne52.png)
The total momentum of both the players can be given as,
![p=p_1+p_2](https://img.qammunity.org/2023/formulas/physics/college/gdpubj8z7stp2agfqbrkqd4cnfe83kq5ez.png)
Plug in the known expressions,
![\begin{gathered} p=m_1v+m_2v \\ =(m_1+m_2)v \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/uz4fdmzyzirg176df5sho7wqda7iak5nrr.png)
Substitute the known values,
![\begin{gathered} p=(89.3\text{ kg+94.8 kg)(8.32 m/s)} \\ =(184.1\text{ kg)(8.32 m/s)}(\frac{1\text{ N}}{1kgm/s^2}) \\ =1531.7\text{ Ns} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/9ltbzq2jdd2dtwlnyn7nm1ltfhju3qir0a.png)
Thus, the total momentum of both the players is 1531.7 Ns.