allIn the question, we are given the following information.
![\begin{gathered} \operatorname{mean}=1.615 \\ \text{Standard deviation = 1.387} \\ \text{Confidence level =99\%} \\ \text{sample = 8} \end{gathered}]()
Step-by-step explanation
We can find the confidence interval using the formula below;
![CI=\bar{x}\pm z.\frac{s}{\sqrt[]{n}}](https://img.qammunity.org/2023/formulas/mathematics/college/9j93nkhzobrtsmccwj3fedgb71sm9e3ubm.png)
CI = confidence interval
x = sample mean
z = confidence level value
s = sample standard deviation
n = sample size
For a 99% confidence interval, the confidence level value is 2.576
Therefore, the CI can be gotten by inserting all the stated values into the formula.
![undefined]()