203k views
5 votes
Use special right triangle patterns for the problem. Do not enter decimals. use "sqrt" for square roots.

Use special right triangle patterns for the problem. Do not enter decimals. use &quot-example-1

1 Answer

6 votes

Given a triangle, with the following dimensions below


\begin{gathered} \text{Opposite}=10\text{ units} \\ \text{Adjacent}=x\text{ units} \\ \text{Hypotenuse}=y\text{ units} \\ \theta=45^o \end{gathered}

To find the value of x, we use SOHCAHTOA,

Where


\tan \theta=(Opposite)/(Adjacent)

Substitute the values into the formula above


\begin{gathered} \tan \theta=(Opposite)/(Adjacent) \\ \tan 45^o=(10)/(x) \\ \text{Where }\tan 45^o=1 \\ 1=(10)/(x) \\ \text{Crossmultiply} \\ x=10\text{ units} \end{gathered}

Thus, x = 10 units

To find the value of y, using the Pythagorean theorem

The Pythagorean theorem is


(\text{HYP)}^2=(OPP)^2+(\text{ADJ)}^2

Substitute the values to find the value of y


\begin{gathered} y^2=10^2+x^2 \\ \text{Where x}=10 \\ y^2=10^2+10^2 \\ y^2=100+100=200 \\ y^2=200 \\ \text{Square of both sides} \\ \sqrt[]{y^2}=\sqrt[]{200} \\ y=\sqrt[]{2*100}=\sqrt[]{100}*\sqrt[]{2} \\ y=10*\sqrt[]{2} \\ y=10\sqrt[]{2}\text{ units} \end{gathered}

Hence, the values of x and y are


\begin{gathered} x=10\text{ units} \\ y=10\sqrt[]{2}\text{ units} \end{gathered}

User Rafiq
by
4.5k points