The first step to find the area of the hexagon is to find the apothem of it by using the following formula:
![a=(l)/(2tan\theta)](https://img.qammunity.org/2023/formulas/mathematics/college/s6zijiijtry33gvarl0l140fdghnid1vg1.png)
Where l is the sidelength and θ is half the central angle:
![a=((16√(3))/(3))/(2tan30)=8](https://img.qammunity.org/2023/formulas/mathematics/college/komf8q0rrsrijxdcmmlr13802qlwqr2th8.png)
Now, find the perimeter of the hexagon by multiplying the side length by 6:
![\begin{gathered} P=6\cdot(16√(3))/(3) \\ P=32√(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1d1wnd1irp3sg3nt9ja2akmkgb79lgs96z.png)
Finally, find the area of the hexagon by using the following formula:
![\begin{gathered} A=(P\cdot a)/(2) \\ A=(32√(3)\cdot8)/(2) \\ A=128√(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/khfk2mrhtrq5t0uw52hkn94mr81bscx7ny.png)
The area of the given hexagon is 128√3