Given:
A line passes throught the point (-1,6).
The slope of the line is m = (5/4).
The objectiv is to find the equation of the line.
Step-by-step explanation:
Consider the coordinates as,
![(x_1,y_1)=(-1,6)_{}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ovrh5zwm0x7u7algfz6jk8td5x1069cio5.png)
The general formula to fid the equation of line in slope-point form is,
![y-y_1=m(x-x_1)\text{ . }\ldots\ldots\ldots(1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/me56x5atm9o8yey2qqupxj7l0leia8zqhi.png)
Now, substitue the given values in equation (1).
![\begin{gathered} y-6=(5)/(4)(x-(-1)) \\ y-6=1.25(x+1) \\ y=1.25x+1.25+6 \\ y=1.25x+7.25\text{ . . . .(2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ki47pn7wdorl7r9qa566oxe1nt0t5bs6k7.png)
To obtain the graph:
Consider two value for the x = 0 and y = 0 to obtain coordinates to draw the graph.
At x = 0:
Substitute the value of x in equation (2),
![\begin{gathered} y=1.25(0)+7.25 \\ y=7.25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ev07vyhm56yf6w4mfof28g2synt7k82s7l.png)
Thus, the coordinate is (0,7.25).
At y = 0:
Substitute the value of y in equation (2),
![\begin{gathered} 0=1.25x+7.25 \\ x=(-7.25)/(1.25) \\ x=-5.8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/dbsplxsyaxh5fpwyy7jz62ssvdc7sb1459.png)
Thus, the coordinate is (-5.8,0).
To plot the graph:
The graph of the line will be,
Hence, the graph of the line y = 1.25x + 7.25 is obtained.