Answer:
4/3
Step-by-step explanation:
If we have an equation with the form:
ax² + bx + c = 0
where a, b, and c are constants, we can calculate the roots of the equation, using the following:
![\begin{gathered} x=\frac{-b+\sqrt[]{b^2-4ac}}{2a} \\ \text{and} \\ x=\frac{-b-\sqrt[]{b^2-4ac}}{2a} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bouvw4h0x6e4vl1s3yxfa8xudsx2zj1amv.png)
In this case, the equation is: 3x² - 4x + 4
So, a is 3, b is -4 and c is 4. Therefore, the roots of the equation are:
![\begin{gathered} x=\frac{-(-4)+\sqrt[]{(-4)^2-4\cdot3\cdot4}}{2\cdot3}=\frac{4+\sqrt[]{16-48}}{6}=\frac{4+\sqrt[]{-32}}{6} \\ x=\frac{-(-4)-\sqrt[]{(-4)^2-4\cdot3\cdot4}}{2\cdot3}=\frac{4-\sqrt[]{16-48}}{6}=\frac{4-\sqrt[]{-32}}{6} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o6xhb15se46kczmh2s3fzah5vuxbg82a4y.png)
Therefore, the sum of the roots is equal to:
![\frac{4+\sqrt[]{-32}}{6}+\frac{4-\sqrt[]{-32}}{6}=\frac{4+\sqrt[]{-32}+4-\sqrt[]{-32}}{6}=(8)/(6)=(4)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/snxdfw2jmsuzpnbxqga27vn8tt2s89omq3.png)
So, the answer is 4/3