162k views
5 votes
Hello! I need some assistance with this homework question for precalculus, please?HW Q26

Hello! I need some assistance with this homework question for precalculus, please-example-1

1 Answer

5 votes

Answer

Step-by-step explanation

Given:


\log_au-\log_av+9\log_aw

To write the above given into a single logarithm, we first apply the log rule:


b\cdot\log_a(x)=\log_a(x^b)

So,


9\log_aw=\log_aw^9

Hence,


\operatorname{\log}_au-\operatorname{\log}_av+9\operatorname{\log}_aw=\log_au-\log_av+\log_aw^9

Next, we apply the log rule:


\log_a(x)-\log_a(y)=\log_a((x)/(y))

This means that:


\operatorname{\log}_au-\operatorname{\log}_av=\log_a((u)/(v))

Hence,


\log_au-\log_av+\log_aw^9=\log_a((u)/(v))+\log_aw^9

Then, we apply the log rule:


\log_a(x)+\log_a(y)=\log_a(xy)

So,


\log_a((u)/(v))+\log_aw^9=\log_a((uw^9)/(v))

Therefore, the answer is:


\begin{equation*} \log_a((uw^9)/(v)) \end{equation*}

User Jason Rahm
by
4.0k points